Contents

Int	roduct	ion	V
Un	til the	Publication of the English Edition	vii
Ack	knowle	dgments	ix
Pre	eface fo	or the English Edition	xi
1.	A PO	INT OPENS THE DOOR TO ORIGAMICS	1
	1.1	Simple Questions About Origami	1
	1.2	Constructing a Pythagorean Triangle	2
	1.3	Dividing a Line Segment into Three Equal Parts Using no Tools	5
	1.4	Extending Toward a Generalization	8
2.	NEW	FOLDS BRING OUT NEW THEOREMS	11
	2.1	Trisecting a Line Segment Using Haga's Second Theorem Fold	11
	2.2	The Position of Point F is Interesting	14
	2.3	Some Findings Related to Haga's Third Theorem Fold .	17

		Origamics: Mathematical Explorations Through Paper Folating	XIV
3.		ENSION OF THE HAGA'S THEOREMS TO LVER RATIO RECTANGLES	21
	3.1	Mathematical Adventure by Folding a Copy Paper	21
	3.2	Mysteries Revealed from Horizontal Folding of Copy Paper	25
	3.3	Using Standard Copy Paper with Haga's Third Theorem	30
4.	X-LI	NES WITH LOTS OF SURPRISES	33
	4.1	We Begin with an Arbitrary Point	33
	4.2	Revelations Concerning the Points of Intersection $ \ldots $	35
	4.3	The Center of the Circumcircle!	37
	4.4	How Does the Vertical Position of the Point of Intersection Vary?	38
	4.5	Wonders Still Continue	41
	4.6	Solving the Riddle of " $\frac{1}{2}$ "	42
	4.7	Another Wonder	43
5.	"INT	RASQUARES" AND "EXTRASQUARES"	45
	5.1	Do Not Fold Exactly into Halves	46
	5.2	What Kind of Polygons Can You Get?	46
	5.3	How do You Get a Triangle or a Quadrilateral?	48
	5.4	Now to Making a Map	49
	5.5	This is the "Scientific Method"	53
	5.6	Completing the Map	53
	5.7	We Must Also Make the Map of the Outer Subdivision	55
	5.8	Let Us Calculate Areas	57

xv Contents

6.	A PETAL PATTERN FROM HEXAGONS?									
	6.1	The Origamics Logo	59							
	6.2	Folding a Piece of Paper by Concentrating the Four Vertices at One Point	60							
	6.3	Remarks on Polygonal Figures of Type $n \ldots \ldots$	63							
	6.4	An Approach to the Problem Using Group Study	64							
	6.5	Reducing the Work of Paper Folding; One Eighth of the Square Will Do	65							
	6.6	Why Does the Petal Pattern Appear?	66							
	6.7	What Are the Areas of the Regions?	70							
7.	HEP	TAGON REGIONS EXIST?	71							
	7.1	Review of the Folding Procedure	71							
	7.2	A Heptagon Appears!	73							
	7.3	Experimenting with Rectangles with Different Ratios of Sides	74							
	7.4	Try a Rhombus	76							
8.	A W	ONDER OF ELEVEN STARS	77							
	8.1	Experimenting with Paper Folding	77							
	8.2	Discovering	80							
	8.3	Proof	82							
	8.4	More Revelations Regarding the Intersections of the Extensions of the Creases	85							
	8.5	Proof of the Observation on the Intersection Points of Extended Edge-to-Line Creases	89							
	8.6	The Joy of Discovering and the Excitement of Further Searching	91							

		Origamics: Mathematical Explorations Through Paper Folding	xvi
9.	WHE	CRE TO GO AND WHOM TO MEET	93
	9.1	An Origamics Activity as a Game	93
	9.2	A Scenario: A Princess and Three Knights?	93
	9.3	The Rule: One Guest at a Time	94
	9.4	Cases Where no Interview is Possible	97
	9.5	Mapping the Neighborhood	97
	9.6	A Flower Pattern or an Insect Pattern	99
	9.7	A Different Rule: Group Meetings	99
	9.8	Are There Areas Where a Particular Male can have Exclusive Meetings with the Female?	101
	9.9	More Meetings through a "Hidden Door"	103
10.	INS	SPIRATION FROM RECTANGULAR PAPER	107
	10.1	A Scenario: The Stern King of Origami Land	107
	10.2	Begin with a Simpler Problem: How to Divide the Rectangle Horizontally and Vertically into 3 Equal Parts	108
	10.3	A 5-parts Division Point; the Pendulum Idea Helps	111
	10.4	A Method for Finding a 7-parts Division Point	115
	10.5	The Investigation Continues: Try the Pendulum Idea on the 7-parts Division Method	117
	10.6	The Search for 11-parts and 13-parts Division Points	120
	10.7	Another Method for Finding 11-parts and 13-parts Division Points	122
	10.8	Continue the Trend of Thought: 15-parts and 17-parts Division Points	125
	10.9	Some Ideas related to the Ratios for Equal-parts Division based on Similar Triangles	130

xvii Contents

10.10 Towards More Division Parts								134
10.11 Generalizing to all Rectangles								134